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Abstract 

A physical definition of the inertial reference frame (IRF) is given, and the properties 
of solutions of the Einstein equation (with cosmological constant A), which admit an 
IRF (IRF solutions) are investigated. Their Petrov type is uniquely determined by the 
viscous stress tensor. Only the types/, D or 0 are possible. The unique vacuum IRF 
solution is the Minkowski space-time. The unique IRF solution belonging to a perfect 
fluid is the Einstein universe. A is of special importance. For A = 0, the only physically 
admissible IRF solution is the Minkowski space-time. For A ~ 0, only interior solutions 
with strong restrictions for density and pressure are possible. 

1. Introduction 

A concept o f  central meaning in Newtonian physics is the inertial 
reference frame (IRF). I t  may be defined as such a frame, in which no 
inertial forces occur. I t  is characterised, moreover, by the fact that in 
referring to it, all physical laws receive their most simple mathematical form. 

On the other hand, in Einstein's theory of curved space-time (including 
the flat world as a limiting case), gravitational and  inertial forces are no 
longer primary concepts. On the contrary, the starting point of  the theory 
is the replacement of  both by geometrical ideas (for example, the geodetic 
movement  of  test particles). Furthermore, physical laws are formulated 
independently of  reference frames. 

Nevertheless, general relativity too needs the concept of  the reference 
frame, because the results of  measurement always depend on the motion 
of the respective observer. Accordingly, reference frames--represented by 
observer fields--are necessary to establish a connection between the mathe- 
matical quantities (defined independently of  a reference frame) and the 
measured variables (dependent on the observer). Consequently, as elements 
of  a generally covariant theory o f  measurement (compare, for example, 
Uhlmann, 1960; Dehnen, 1970), reference frames form an essential par t  
of  general relativity. 
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Although the formulation of  the theory does not mark  out any reference 
frame, comparison with Newtonian physics raises the question of definition, 
existence and remaining role of  inertial reference frames in Einstein's theory. 

I t  appears that only special solutions of  Einstein's field equations admit 
an I R F  ( IRF solutions). In the following we discuss the physical and 
mathematical properties of  these I R F  solutions and of the corresponding 
distributions of  matter. Hereby the cosmological constant A will be of  
special importance; and in this way one aspect of  the physical meaning 
of A will become more transparent. 

2. 1RF and General Properties of lRF  Solutions 

2. I. Definition 

Following Newtonian mechanics, we define an IRF  in a physical way 
using a cloud of test particles; a cloud of free test particles which moves 
rigidly and without rotation represents an inertial reference frame. That  
means, tha t - - in  a region with a non-vanishing 4-volume-- the 4-velocity 
field u~(x) of the particles (u~'u~ = +1) has the following kinematical prop- 
erties:t  

u ~' u '  = 0 (vanishing acceleration) (2.1.1) 12 ~ : =  ;~ 

0 := u~, = 0 (vanishing expansion) (2.1.2) 

cry, t3 := u(~;t~ ~ - a(~, ut3 ) - k(g~,g - u~ u/3). 0 = 0 (vanishing shear) (2.1.3) 

co~ := ut~;/~ - ar~ ugj = 0 (vanishing rotation) (2.1.4) 

According to the identity 

u~,;~ =- o ~  + cr~ + �89 - u~u~)O + ft~u~ (2.1.5) 

the 4-velocity field u"(x) is covariantly constant in the whole region 

u~;~ = 0 (2.1.6) 

We obtain a dynamic interpretation of an I R F  in considering the u"- 
congruence as the world-tines of  observers. 3-momentum and energy of any 
freely moving test particle, as measured by these inertial observers, do not 
change with time, i.e. the particle moves rectilinearly with constant velocity. 
This fact can be interpreted as the absence of gravitational and any inertial 
forces with respect to an I R F  (Dehnen, 1970). 

2.2. Relation Between T~,~ and R ~  
We call I R F  solutions those solutions of Einstein's field equations (A 

is the cosmological constant) 

R~r - �89 - Ago#~ = -T~[~ (2.2.1) 

-~ Signature of g,a: ( - - - + ) .  Range of indices: a, fl . . . .  = l, 2, 3, 4. A definition is 
indicated by := and an identity by ~. Partial and covariant derivatives are denoted by 
subscripts, and ; respectively. 

a(,~) := �89 + ap~), at~a~ := �89 a - aa~) 
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which admit an IRF. In consequence of the Ricci identity and of (2.1.6), 
being valid in a 4-region, the metric of an IRF solution satisfies 

R~/3v u ~' = 0 (2.2.2) 

and therefore 

R ~  u" = 0 (2.2.3) 

Contracting the decomposition of the Riemann tensor 

R~,o[3~ =- C~,o~v + g~,t[J R~lo + g,,t~ R[3~, + �89 gtJ~,, R (2.2.4) 

with u~u ~ and taking into account (2.2.2) and (2.2.3), we can write (2.2.4) 
in view of (2.2.1) in the form 

R R 
R~,~-�89 A g ~ [ j = - ~ - u ~ u ~ - ( - ~ +  A)g~[~- 2C~,~u"u ~ (2.2.5) 

Subtracting (2.2.1) from (2.2.5), we finally obtain for IRF-solutions the 
following fundamental relation between the components of the energy 
momentum tensor (compare, for example, Eckart, 1940; Audretsch, 1967) 
and the Riemann tensor: 

T~/3 =(p + p) u~ u~ - Pg~[3 + q~, u[3 + qlJ u~, + 0~,[3 

= ~ u ~ u ~ +  + A  g ~ - 2 E ~  (2.2.6) 

with energy density p, hydrostatic pressure p, heat flow q~ 

q~ := T'~au,,(g~a - u~, ua) (2.2.7) 

and viscous stress tensor 0~,  all as measured by the observer field u~(x). 
E~/3 defined by 

E~g := -C~/~, u * u ~ (2.2.8) 

has the same properties 

E t ~  = 0, E ~ u~ = 0, E~' = 0 (2.2.9a-c) 

as 0~:  

0 ~/31 = 0, 0 ~ u/3 = 0, 0~ ~ = 0 (2.2.1 0a-c) 

Because of the vanishing divergence of T ~/3, we get from (2.2.6) according 
to (2.1.6) and (2.2.9b) the differential equation 

R , u ' = 0  (2.2.1 la) 

Furthermore, we obtain from (2.2.6) by contracting with u~ and using 
(2.2.9b) and (2.2.10b) the following relations: 

q ~ = 0  (2.2.1 lb) 

p - �89 - A = 0 (2.2.1 lc) 
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and by contracting with g ~  - u ~ u ~ and using (2.2.9c) and (2.2.10c) 

R 
p+~-+A=0 (2.2.11d) 

0 ~  + 2 E ~  = 0 (2.2.11e) 

The necessary conditions (2.2.11a-e) characterise the 1RF-solutions. The 
consequences following from (2.2.11 a-e) will be discussed below. 

2.3. Petrov Type 

The connection (2.2.11e) relates the viscous stress tensor 0 ~ to the first 
five linearly independent components of the Weyl tensor, which are repre- 
sented by E ~/3. The remaining five components are given byt  

H ~  :=-*C~,a~vu~uV; Hc~o1=H~u~=H,'=O (2.3.1) 

From (2.2.2), (2.2.3) and (2.2.4) follows 

uta C~o~t~v u ~ = 0 (2.3.2) 

and therefore 

H~,/3 = - * C ~ , ~  u ~ u v = 0 (2.3.3) 

In classifying the Weyl tensor according to Petrov's matrix method 
(Petrov, 1954; compare Jordan et al., 1960, and Anderson, 1967), one 
projects 

C~/3 := E ~  + iH~ (2.3.4) 

on an orthonormal vector tetrad which contains u% The projections form 
a complex, trace-free and symmetrical 3 • 3 matrix~ (Cab). The linearly 
independent eigenvectors and their eigenvalues determine the Petrov type. 
Because of (2.3.3), (C~b) is real for IRF solutions and hence can be 
diagonalised by means of a rotation of the three space-like vectors of the 
tetrad. Therefore (Cab) possesses three linearly independent eigenvectors; 
and accordingly IRF solutions are of Petrov type I, D or O. 

From (2.2.11d), (2.3.3) and (2.3.4) we find 

c~ = -�89 (2.3.5) 
Thus the eigenvalues of the viscous stress tensor 0 ~ determine the Petrov 
type of the corresponding IRF solution uniquely as followsw 

Three distinct eigenvalues ~ Petrov type 1 

Two distinct eigenvalues ~ Petrov type D 

0 ~ = 0 .~ Petrov type 0 (conformallyflat) (2.3.6) 

t The duality operation is indicated by an asterisk. [A... or] denotes total antisymmetry 
in all indices A ... or. 

:~ Range of indices: a, b . . . .  = 1, 2, 3. Brackets denote a matrix. 
w ~- characterises the one-to-one correspondence. 
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2.4. Symmetry Properties 

Evidently after (2.1.6), an IRF solution is static and admits at least the 
following motion of  the metric~ 

s gag = 0 (2.4.1) 
u 

With regard to the invariances of composed metrical quantities, an I R F  
solution admits the three curvature collineations~ (Katzin et al., 1970): 

de R ~  = 0 (2.4.2) 
~(a) 

wherein 

with S given by 

~:(]'~ := u ~, ~(~) := Su m, ~:(~) := S 2 u ~ (2.4.5) 

SI'~ := u~ (2.4.6) 

They form a three-parameter invariance group, which is characterised by 
the structure relations 

[ X l ,  X 2]  = J ( l ,  

with the generators 

2.5. Line Element 

[X1, )(31 = 2X2, [)(2, )(3] = X3 (2.4.7) 

0 
X(a) := ~(~) Ox ~ (2.4.8) 

From (2.1.6) we easily obtain: A space-time admits an 1RF i f  and only 
i f  its line elements can be put into the (special static) form~ 

ds 2 = -g,b(x c) dx a dx b + dt 2 (2.5.1) 

choosing u s = 84:'. Every metric of the type (2.5.1) may be taken for an 
IRF solution. In this case it belongs to an energy momentum tensor, which 
underlies strongly restricting physical conditions resulting from (2.2.11 a-e). 
We discuss this in the sections that follow. 

3. Vacuum IRF  Solutions 

With T ~3 = 0, (2.2.1 lc) and (2.2.1 ld) lead to 

R + 2 A = 0  
respectively 

R + 6 A = 0  
which implies 

R = 0 ,  A = 0  

Consequently, for A ~ 0 only interior IRF solutions are possible. 

"~ ~ denotes the Lie derivative with respect to u ' .  
u 

+ Range of indices: a, b . . . .  = 1,2,3. 

(3.1) 

(3.2) 

(3.3) 
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In the case of vacuum IRF solutions we have from (3.3) and the field 
equations (2.2.1) 

R ~  = 0  0.4) 
while (2.3.5) leads to 

c ~  = 0 (3.5) 

Hence the Weyt tensor vanishes identically. Herewith and after (3.3) and 
(3.4) it follows from (2.2.4), that the Riemann tensor vanishes too. 

R~t~ ~ = 0 (3.6) 

On the other hand, fiat space-time certainly is an IRF solution [compare 
(2.5.1)]. We therefore conclude, that the unique vacuum IRF solution is the 
Minkowski space-time. 

4. Interior IRF Solutions 

4.1. Restrictions for the Variables of  State 

If  an interior solution of Einstein's equation (2.2.1) admits an IRF, the 
corresponding matter possesses no heat flow relative to this IRF, compare 
(2.2.11b). Furthermore in consequence of (2.2.11c) and (2.2.11d) density 
p and pressure p must satisfy the very restrictive condition. 

p + 3p = -2A = const. (4.1.1) 

Beyond this, (2.2.1 la) yields with (2.2.11c) and (2.2. l ld)  

p,, u" = O, p,~u ~ = 0 (4.1.2a-b) 

This means thatp andp, as measured by an observer in an IRF, are constant 
with respect to time. 

4.2. Vanishing Cosmological Constant 
Equation (4.1.1) has the following meaning: interior IRF solutions with 

vanishing cosmological constant belong to matter with the high negative 
pressure p = -�89 For example, matter of density 1 g/cm 3 must have the 
physically senseless pressure minus 1015 atmospheres. It is reasonable ,  
therefore, to conclude that for A = 0 only vacuum IRF solutions are 
possible. With respect to the result of Section 3 this means, that the only 
physically meaningfull IRF solution with A = 0 is the flat space-time. 

4.3. Non- Vanishing Cosmological Constant 

I f  A does not vanish (according to Section 3) only interior IRF solutions 
are possible. In view of this, we discuss three energy momentum tensors 
that are often used. 

Perfect fluid. With respect to the streamlines ~', the energy momentum 
tensor of a perfect fluid can be written 

T~'~ = (~ + if) a~,a~ - fig=~ (4.3.1) 
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I f  the corresponding solution of (2.2.1) admits an IRFu ~, equation (2.2.6) 
takes the form 

T~ =(~ + fi)~a~-~g~ = gu~ur + -~+ A g ~ -  2E~r (4.3.2) 

Contraction with u ~3 gives 

(R  + A + ~) u~ = (~ q_. fi) ( g~ u~) ~ ~ (4.3.3) 

This implies (p r -g  ensures the existence of streamlines) 

~ = u ~, ~ = p, /3 = p (4.3.4a-c) 

In tRF  solutions which belong to a perfect fluid, the IRF is represented by 
the streamlines. This means (in contrast to the situation in the Minkowski 
space-time), that only one IRF is possible. 

According to (4.3.1) and (4.3.4a) 0 ~';~ vanishes, thus with regard to the 
Petrov classification we have: an interior IRF solution belongs to a perfect 
fluid (land only if  it is eonformally flat. 

We perform an explicit construction of  this IRF solution. It is well known 
(Stephani, 1967b), that conformally flat solutions of Einstein's equation 
with a perfect fluid as a source are of the embedding class 1. The special 
solutions of  this class with vanishing expansion of  the streamlines are of 
the type of  the interior Schwarzschild solution (Stephani, 1967a). In the 
coordinate system which is determined by streamlines, fi~' ~ ~4", their line 
element can be written in the form: 

dr 2 
ds2 = - 7 -  (r2 / Ro 2) - r2(sin2v~d~2 + dye2) + ( D(r' v~' ~' t ) dt )2 (4.3.5) 

To ensure the existence of an IRF [compare 4.3.4a-c) and (2.5.1)], we have 
finally to specialise to D = const.: the unique IRF solution belonging to a 
perfect fluid is the (static) Einstein universe. 

Etectromagneticfield. The trace of the energy-momentum tensor of  the 
electromagnetic field 

T~,~ = �88 F~'~ g~,[3 - F~,, F[3" (4.3.6) 

vanishes, thus leading to 

0 - 3p = 0 (4.3.7) 

(equation of  state). I f  the corresponding solution of  the Einstein equation 
(2.2.1) admits an IRF, we get from (4.1.1) 

p = - A  = const., p = const. (4.3.8a-b) 

and because o fp  > 0 the cosmological constant does not vanish 

A < 0 (4.3.9) 
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Furthermore,  we project T ~'3 on an orthonormal vector tetrad which 
contains the I R F  vector u ~ as the time-like vector. The resulting matrix 
of  the projections can be brought  into the following form by rotation of  
the three space-like vectors (Petrov, 1964)t 

( T ~ )  = 

a 2 + b z 
0 0 •  

2 
--a 2 + b 2 

0 0 0 
2 

a 2 _ 32 
0 0 0 

2 
a z + b 2 

•  0 0 
2 

(4.3.10) 

According to (2.2.11 k I either a or b must be equal to zero. Therefore, putting 
e.g. b = 0, the trace-free 3 x 3 matrix of  the projections of  the corresponding 
viscous stress tensor is of  the fo rmt  

(4.3.11) 

Hence, if  an I R F  solution exists, according to (2.3.6) the Weyl  tensor is 
o f  Petrov type D. 

Radiation. The energy-momentum tensor of  all sorts of  pure radiation 
is of  the type 

T ~ = aj~j  3, j ~  = O, a # 0 (4.3.8) 

In this case we obtain by contracting (2.2.6) with u~ the following relation 

(aj~u~)j~ = ( 2  + A)u~ ,  (j~u~ # O) (4.3.9) 

Because this represents a contradiction we conclude, thatpure  radiation can 
not be a source o f  an I R F  solution. 

5. Conclusions 

The main conclusions of  this work are as follows: 

(i) A = 0: The only physically admissible I R F  solution is the Minkowski 
space-time. This is also for arbitrary A the only mathematically possible 
vacuum I R F  solution. 

t Range of indices: a, b . . . .  = / ,  2, 3. Brackets denote a matrix. 
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A va 0 : Only interior I R F  solutions are possible. They belong to a mat te r  
distr ibution which satisfies the very restrictive conditions (4.1.1) and (4.1.2). 

(ii) In  the case of  the perfect fluid, the unique interior I R F  solution is 
the (static) Einstein universe. 

(iii) The  Pet rov type of  all I R F  solutions is uniquely determined by the 
corresponding (trace-free) viscous stress tensor  according to (2.3.6). Only 
the t y p e s / ,  D and 0 are possible. The I R F  solution belonging to a perfect  
fluid is conformal ly  flat [compare (ii)], those referring to an electromagnetic 
field are of  type D. For  ene rgy-momentum tensors of  pure  radiat ion,  no 
I R F  solutions are possible. 
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